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Abstract 

Power distribution networks depend on distribution transformers to work well, which makes sure that there 

is a steady flow of energy. But these transformers can fail in a number of ways, which can cause expensive 

downtime and service interruptions. Traditional methods of maintenance, like regular checks and preventative 

maintenance, aren't always effective and can cost more than they need to. In recent years, there has been a 

rise in interest in using machine learning (ML) and artificial intelligence (AI) to plan ahead for repair on power 

transformers. AI-powered predictive maintenance systems can look at both old and new data from transformers 

to find patterns and trends that could mean they are about to break down or malfunction. It is possible to 

improve upkeep tasks and lower the risk of unexpected downtime by predicting these problems before they 

happen. This paper gives a full picture of predicted maintenance for distribution transformers that use AI. It 

talks about the main problems with standard care methods and shows why using AI-driven methods is better. 

The study also talks about current AI-based forecast maintenance methods, such as preparing data, choosing 

features, and training models. In addition, it looks into the possibility of combining IoT devices to collect data 

and watch things in real time. In addition, the study talks about the problems and restrictions of using AI-

powered predictive maintenance systems, like the need to constantly update models and worries about data 

privacy. The report also looks at the financial and environmental effects of putting these systems in place, 

focusing on the chances of saving money and making things last longer. 

 

I. INTRODUCTION 

Power distribution transformers control the voltage 

levels that go from generators to users and are therefore 

very important parts of power systems. Their failure, 

whether it's short-term or long-term, cuts off the power, 

which affects daily life and costs money. Failure 

prevention and early discovery are very important to 

keep dependability high and avoid unexpected outages. 

Recent study has come up with efficient selection 

methods that try to reach the best goals using new 

technologies. These methods make sure that reliability 

goals are met by giving units failure rate goals. 

Following some rules can help you choose the best way 

to divide up resources based on your needs for accuracy, 

application, and available resources. One more way is to 

divide up repair funds based on factors that affect 

upkeep and availability. Trends like remote and 

automatic repair are examples of how Industry 4.0 

technologies are changing the way decisions are made in 

the production sector. These improvements make things 

work better and cut down on downtime [1]. 

Transformers often have problems with insulation, 

which can happen because of too much current, voltage, 

or overload. It can also happen when cooling equipment 

fails. Therefore, checking the health of the generator is 

very important for making sure it works well. Each 

unexpected outage costs owners and customers money, 

which shows how important it is to find problems 

quickly [2]. Choosing the right diagnostic methods and 

correctly interpreting test results are important for 

maintenance, no matter where the generator is located. 

Adding tracking tools that look at the weather can help 

handle energy better and make sure the system works 

well. 
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Distribution transformers are very important parts of 

power distribution networks because they lower the 

energy from the transmission system to a level that end 

users can handle. These generators are necessary to 

make sure that homes, businesses, and workplaces 

always have power. However, power transformers can 

break down and cause service delays and costs to go up, 

just like any other electrical equipment [3]. Inspections 

and preventative maintenance for distribution 

transformers are usually done on a set plan as part of 

traditional maintenance. These habits may help find 

possible problems, but they often lead to upkeep tasks 

and costs that aren't needed. They also don't always stop 

sudden fails because they aren't made to fit the state of 

each transformer. In the past few years, there has been a 

rise in interest in using artificial intelligence (AI) and 

machine learning (ML) to plan ahead for repair on 

distribution transformers. Predictive maintenance 

systems that use AI can look at a huge amount of past 

and real-time data from transformers to find patterns and 

trends that could mean that something is wrong or about 

to fail. Predicting these problems before they happen can 

help with maintenance tasks and lower the chance of 

unplanned downtime [4]. Using AI for predicted 

maintenance has a number of important benefits over the 

old ways of doing things. To begin, AI programs can 

look at large amounts of complex data much faster and 

more correctly than people can. This lets problems be 

found early on. Second, AI can help set priorities for 

maintenance tasks based on how bad they are and how 

likely they are to fail, which makes better use of 

resources. Lastly, predictive maintenance powered by AI 

can save a lot of money by cutting down on unplanned 

downtime and making transformers last longer. 

Even though it could be helpful, using AI to help with 

predicted repair for distribution transformers is not easy 

[5]. Two big problems are the amount and quality of 

data that is available. Large amounts of good data are 

needed to train AI systems well, but this data isn't 

always easy to find. Furthermore, there are worries 

about the safety and privacy of data because predictive 

maintenance systems frequently gather and examine 

private data. This paper gives an in-depth look at 

predicted maintenance for distribution transformers that 

is made possible by AI. We talk about the problems with 

standard upkeep methods and the advantages of using 

methods that are led by AI. We also look at some of the 

current AI-based predictive maintenance methods, such 

as preparing data, choosing features, and training 

models. We also look into the possibility of combining 

IoT devices to collect data and watch things in real time. 

II. RELATED WORK 

In recent years, predictive maintenance for distribution 

transformers has become more and more popular. 

Researchers and maintenance professionals are looking 

into a wide range of techniques and methods to make 

maintenance more reliable and effective [6]. This part 

gives an outline of related work in this area, focusing on 

important studies and ways of doing things. [7] did one 

of the first studies on forecast maintenance for 

distribution transformers. They came up with a model 

based on artificial neural networks (ANNs) to figure out 

how much useful life (RUL) a transformer still has. The 

model trained the neural network with past data on 

transformer breakdowns and maintenance records. It was 

able to predict the RUL of transformers with good 

accuracy. [8] used a support vector machine (SVM) 

method to create a predictive maintenance model for 

distribution transformers in a study that was similar to 

this one. The model was taught using old information on 

transformer failures, upkeep tasks, and weather factors. 

This shows that machine learning methods can be used 

to predict transformer failures [9]. 

Other experts have looked at how to combine Internet of 

Things (IoT) technologies with methods for predicting 

when power transformers will need repair. [10] for 

example, came up with a plan for IoT-enabled predictive 

maintenance of distribution transformers. This plan 

included using devices to gather real-time information 

about the health and performance of the transformers. 

The system used machine learning techniques to look at 

the sensor data and guess what might go wrong, which 

let repair workers plan ahead [11]. Besides methods 

based on machine learning, scientists have also looked 

into using models based on physics to help plan repair 

for distribution transformers. [12] for example, used the 

thermal dynamics of transformers to make a model that 

can predict how shielding materials will age and rise in 

temperature, both of which are important factors in 

transformer breakdowns. Field data were used to test the 

model, and it did a good job of predicting when 

transformers would fail. Deep learning methods, like 

convolutional neural networks (CNNs), are being used 

more and more for predicted repair of distribution 

transformers over the past few years. As an example, 

[13] suggested a CNN-based model for diagnosing faults 

in distribution transformers. This model was very good 

at finding and classifying different types of flaws. 

The researchers also looked into what predicted repair 

for distribution transformers would mean for the 

economy and the environment. For example, [14] looked 
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at the costs and benefits of predictive maintenance 

methods for distribution transformers. They compared 

how much it cost to adopt predictive maintenance with 

how much it saved in downtime and maintenance costs. 

Based on the study, preventive maintenance can help 

keep distribution transformers running more reliably and 

save a lot of money [15]. There is similar work in 

predictive maintenance for distribution transformers that 

shows how AI and machine learning can be used to 

make maintenance more reliable and efficient. But there 

are still problems that need to be fixed, like bad data, 

hard-to-understand models, and high costs of 

implementation. These need more study and 

development. 

Table 1: Summary of related work 

Method Key Finding Approach Disadvantages Advantages 

Artificial 

Neural 

Networks 

Predicting 

Remaining Useful 

Life (RUL) of 

Transformers 

Utilizing historical 

data on transformer 

failures and 

maintenance records 

to train the model 

Requires large 

amounts of historical 

data 

Can predict the RUL of 

transformers with 

promising results 

Support Vector 

Machine [23] 

Predictive 

maintenance 

model for 

transformers 

Training on historical 

data on failures, 

maintenance 

activities, and 

environmental 

conditions 

May require tuning of 

hyperparameters for 

optimal performance 

Demonstrates the 

potential of machine 

learning techniques in 

predicting transformer 

failures 

Internet of 

Things (IoT) 

[21] 

IoT-enabled 

predictive 

maintenance 

framework 

Using sensors for 

real-time data 

collection and 

machine learning for 

analysis 

May require additional 

infrastructure for 

sensor deployment 

Enables proactive 

maintenance actions 

based on real-time data 

Physics-Based 

Models [22] 

Model based on 

thermal dynamics 

for temperature 

prediction 

Using thermal 

dynamics to predict 

temperature rise and 

aging of insulation 

materials 

May require complex 

calculations and 

assumptions about 

transformer behavior 

Demonstrates a more 

fundamental 

understanding of 

transformer behavior and 

failure mechanisms 

Deep Learning 

(CNNs) 

CNN-based fault 

diagnosis model 

Achieving high 

accuracy in fault 

detection and 

classification 

Requires large 

amounts of data for 

training 

Can detect and classify 

faults in transformers 

with high accuracy 

Cost-Benefit 

Analysis [20] 

Analysis of 

predictive 

maintenance 

strategies 

Comparing costs and 

savings from reduced 

downtime and 

maintenance costs 

May require accurate 

cost and savings 

estimates 

Demonstrates the 

economic benefits of 

implementing predictive 

maintenance for 

distribution transformers 

Data Mining Identifying 

patterns in 

transformer 

failure data 

Analyzing historical 

data to identify 

common failure 

patterns 

May require expertise 

in data analysis and 

interpretation 

Can provide insights into 

common failure modes 

and inform maintenance 

strategies 

Machine 

Learning 

Ensemble [16] 

Ensemble model 

for fault 

prediction 

Combining multiple 

machine learning 

algorithms for 

improved prediction 

performance 

May increase 

complexity and 

computational 

requirements 

Can improve prediction 

accuracy by leveraging 

the strengths of different 

machine learning 

algorithms 
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Condition-

Based 

Monitoring 

Monitoring 

transformer 

health in real-

time 

Using sensors and 

data analytics to 

monitor transformer 

condition 

Requires continuous 

monitoring and data 

collection 

Enables proactive 

maintenance based on 

real-time health data 

Reliability-

Centered 

Maintenance 

[17] 

Maintenance 

strategy based on 

criticality of 

components 

Focusing 

maintenance efforts 

on critical 

components based on 

failure risk analysis 

Requires detailed 

knowledge of 

transformer 

components and 

failure modes 

Improves maintenance 

efficiency by prioritizing 

critical components for 

inspection and 

maintenance 

Prognostic 

Health 

Management 

[18] 

Predicting 

transformer 

failures based on 

health data 

Integrating sensor 

data and analytics to 

predict potential 

failures 

May require 

sophisticated 

algorithms and data 

processing techniques 

Enables early detection 

of potential failures and 

proactive maintenance 

planning based on health 

data 

Remote 

Monitoring 

[19] 

Monitoring 

transformer 

performance 

remotely 

Using remote 

monitoring 

technologies to gather 

data and assess 

transformer condition 

May require reliable 

communication 

infrastructure and data 

security measures 

Allows for monitoring 

transformers in remote or 

inaccessible locations, 

reducing the need for 

onsite inspections and 

maintenance 

Digital Twin Virtual model of 

transformer for 

predictive 

maintenance 

Creating a digital 

replica of the 

transformer for 

simulation and 

analysis 

Requires accurate 

modeling and 

updating to reflect 

real-world conditions 

Enables simulation of 

different scenarios and 

prediction of potential 

failures for proactive 

maintenance 

 

III. TRANSFORMER FAILURE 

A common type of transformer failure is insulation 

failure, which can be caused by too much current, too 

much heat, water getting in, or mechanical damage. 

Insulation that breaks down can cause short circuits and 

other problems that put the transformer's safety and 

performance at risk. Another common problem is 

overheating, which can happen because of too much 

load, bad air, or high temperatures outside. Overheating 

speeds up the breakdown of insulation, which raises the 

chance of failure even more. When electrical wires touch 

each other without meaning to, they create a short 

circuit. These can happen because of bad shielding, too 

much current, or outside causes like lightning hits. When 

there is a short circuit, it can damage the transformer and 

the electrical system around it, which can cause power 

blackouts and damage to equipment.  

• Overvoltage is another major failure cause that 

happens when voltage spikes are too high for 

the transformer to handle. Lightning hits, 

switching activities, or power spikes from the 

grid can all cause this to happen. Overvoltage 

can damage the shielding, which can eventually 

cause the transformer to fail. 

• Mechanical failure can happen when 

mechanical parts are physically damaged, 

installed incorrectly, or get old. When 

mechanical parts break, leaks, oil 

contamination, and other problems can happen 

that make the generator less reliable and less 

effective.  

• A partial discharge is when insulation breaks 

down in one area. This can happen because of 

high voltage stress, water getting in, or 

problems with the insulation. Even though 

partial discharge might not seem like a big deal 

at first, it can damage insulation over time, 

which can lead to failure. 

• Corona discharge is a type of electrical 

discharge that can happen in transformers and 

other high-voltage circuits. Corona discharge 

can damage insulation and cause it to fail if it is 

not handled properly. 

• Transformer oil pollution is another problem 

that can cause insulation to break down and 

performance to drop. Moisture, dust, and 

chemicals can break down the oil, making it 

less effective at keeping the generator cool and 

insulated. 
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Each type of failure has its own causes and effects, 

which shows how important it is to keep up with regular 

upkeep, tracking, and risk-reduction plans for power 

distribution transformers to make sure they work well. 

Different types of failure are given as: 

A. Insulation Failure 

There are many things that can cause transformer 

insulation to fail, such as overloading, burning, 

mechanical stress, and external factors. If you overload 

the generator beyond its stated capacity, the insulation 

may wear down over time, which could cause it to fail. 

Overheating, which can happen when there isn't enough 

air flow or when the temperature outside is high, can 

also speed up the breakdown of insulation and raise the 

risk of failure. Mechanical stress, like movements or 

hits, can also weaken the insulation, making it more 

likely to break. Things in the environment, like water 

getting in, can make the shielding even worse and raise 

the risk of short circuits. Moisture can get into the 

insulation and make ways for electricity to flow, which 

breaks down the insulation. If the insulation fails, it can 

cause short circuits, arcing, and other problems that can 

eventually cause the transformer to fail. 

B. Overheating 

Transformers can get too hot for a number of reasons, 

such as being overloaded, not having enough air flow, or 

being in an area with high temperatures. When the 

transformer is overloaded, too much current flows 

through the windings, which increases heat production 

and resistance losses. Transformers can get too hot if 

they don't have enough air flow, which stops them from 

cooling properly. High temperatures in the area can also 

cause transformers to overheat, especially if they are 

outside and in full sunlight. Many bad things can happen 

to the transformer when it gets too hot, like insulation 

materials wearing out faster, the risk of insulation failure 

going up, and the transformer's lifespan getting shorter. 

Overheating can get so bad that it causes thermal 

runaway, which is when the transformer fails completely 

because of too much heat. 

C. Short Circuit 

When two or more electrical wires touch, going around 

the regular load path, short circuits can happen in 

transformers. Insulation failure, overheating, or outside 

causes like lightning hits can all lead to short circuits. A 

short circuit sends a lot of electricity through the 

transformer, which makes it hot and puts stress on the 

parts. This can cause insulation to break down, damage 

to the windings, and other problems. Short circuits can 

do a lot of damage to the transformer and the electrical 

system around it. They can cause power outages, 

damage to equipment, and dangers to people. Regular 

upkeep, good insulation, and safety devices like fuses 

and circuit breakers are needed to stop short circuits. 

IV. METHODOLOGY 

AI-enabled predictive maintenance for distribution 

transformers uses cutting-edge technologies and 

methods to guess when problems might happen and plan 

maintenance ahead of time. The proposed method is 

shown in figure 1. The process of using AI to help with 

predicted repair for distribution transformers. 

1. Data Collection and Preprocessing:  

To use AI for predicted maintenance, the first thing that 

needs to be done is to get useful data from the 

distribution transformers. This includes information 

about the health, efficiency, weather factors, and repair 

records of the transformer. The data is then 

"preprocessed" to get rid of noise, deal with lost 

numbers, and make the data more normal so it can be 

used for more research. 

2. Feature Selection and Engineering:  

After preparing the data, the next step is to choose and 

engineer features that can be used to predict when a 

transformer will fail. Features like load patterns, 

temperature, oil quality, and shaking levels may be part 

of this. Feature engineering can include changing or 

joining current features to make new ones that better 

show the trends in the data. 

 

Figure 1: Proposed system model block diagram 

3. Model Selection and Training:  

Now that the data has been cleaned up and features have 

been created, the next step is to choose a machine 

learning model and train it to be able to predict when a 

transformer will fail. This can be done with decision 

trees, random forests, support vector machines, and 
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neural networks, among other machine learning 

methods. The model is taught with records of past 

generator breakdowns and repair work. 

A. Graduated Boosting:  

This is a type of ensemble learning that takes several 

weak models, usually decision trees, and turns them into 

a strong forecast model. When trying to figure out how 

long generator parts will still work, Gradient Boosting 

can be used to make estimates more accurate over time 

by adding new models and changing the weights of the 

old models. The model can learn from its mistakes and 

improve its performance in areas where it does badly 

with this method, which leads to more accurate guesses 

over time. 

B. Deep Learning:  

In order to figure out when a transformer part is likely to 

break, deep learning algorithms like convolutional 

neural networks (CNNs) and recurrent neural networks 

(RNNs) can look at sensing data from the transformers. 

These algorithms can automatically learn features and 

trends from the data. This makes them great for jobs that 

standard machine learning methods might not be able to 

handle well. CNNs can learn patterns in sensor data 

about space, while RNNs can learn patterns in sensor 

data about time. Both of these are very important for 

figuring out when a generator will fail. 

1. CNN: 

A Convolutional Neural Network (CNN) can be used for 

analyzing sensor data from power transformers to 

predict when a component is likely to fail. Below is a 

step-by-step mathematical model for a basic CNN 

architecture: 

1. Input Data Representation: Let X be the input data, 

which consists of sensor readings over time for a given 

transformer component. The input data is typically 

represented as a 3D tensor with dimensions (T, W, C), 

where T is the number of time steps, W is the number of 

sensor readings per time step, and C is the number of 

channels (e.g., different sensors). 

2. Convolutional Layer: The first layer of the CNN 

applies convolutional filters to the input data to extract 

features. Let K be the number of filters, each with a size 

of FxF. The output of this layer, denoted as H(1), can be 

computed as: 

𝐻(1)𝑖𝑗𝑘 =  𝜎(∑𝑙 = 1𝐶 ∑𝑚 = 1𝐹 ∑𝑛

= 1𝐹 𝑊(1)𝑙𝑚𝑛 𝑋(𝑖 + 𝑚 − 1, 𝑗 + 𝑛

− 1, 𝑙) +  𝑏(1)𝑘) 

• where σ is the activation function (e.g., ReLU), 

W(1) are the filter weights, and b(1) are the 

bias terms. 

3. Pooling Layer: The pooling layer downsamples the 

feature maps to reduce the spatial dimensions and 

computational complexity. A common approach is max 

pooling, which takes the maximum value in each 

pooling window. Let P be the pooling size. The output 

of this layer, denoted as H(2), can be computed as: 

𝐻(2)𝑖𝑗𝑘 = max(𝐻(1)𝑖𝑃(𝑙 − 1) + 𝑚, 𝑗𝑃(𝑚 − 1)

+ 𝑛, 𝑘) 

4. Flattening: After the pooling layer, the feature maps 

are flattened into a 1D vector to be fed into a fully 

connected layer. Let D be the dimensionality of the 

flattened vector. 

5. Fully Connected Layer: The flattened vector is passed 

through a fully connected layer with weights W(fc) and 

biases b(fc). The output of this layer, denoted as H(fc), 

can be computed as: 

𝐻(𝑓𝑐)𝑖 =  𝜎(∑𝑗 = 1𝐷 𝑊(𝑓𝑐)𝑖𝑗 𝐻(2)𝑗 +  𝑏(𝑓𝑐)𝑖) 

Output Layer: Finally, the output layer uses a softmax 

activation function to compute the probabilities of 

different classes (e.g., failure, no failure) based on the 

features extracted by the CNN. 

2. RNN: 

1. Input data representation 

Dim X(T, W, C) As Double ' 3D tensor representing 

sensor readings over time 

2. Input layer computation 

Dim h(T) As Double 

For t = 1 To T 

    For i = 1 To H 

        ℎ(𝑡)+=  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊𝑖ℎ(𝑖) ∗  𝑋(𝑡)

+  𝑊ℎℎ(𝑖) ∗  ℎ(𝑡 −  1) +  𝑏ℎ(𝑖)) 

3. Recurrent layer computation 

Dim y(T) As Double 

For t = 1 To T 

    𝑦(𝑡)  =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑊ℎ𝑦 ∗  ℎ(𝑡)  +  𝑏𝑦) 

4. Output layer computation 

Dim loss As Double 

For t = 1 To T 
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    𝑙𝑜𝑠𝑠 +=  (𝑦(𝑡)  −  𝐴𝑐𝑡𝑢𝑎𝑙𝐿𝑎𝑏𝑒𝑙(𝑡))^2  

C. Anomaly Detection: 

Some methods for anomaly detection are One-Class 

SVM, Isolation Forest, and Autoencoder. These can find 

strange trends in data that could mean something went 

wrong. These algorithms are especially good at finding 

outliers in sensor data, like rapid changes in power or 

temperature that could mean a failure is about to happen. 

By finding these oddities early, maintenance can be 

planned to avoid major breakdowns and keep downtime 

to a minimum. 

D. Predictive Modeling:  

Methods for predictive modeling, like Markov Chain 

Monte Carlo (MCMC) and Bayesian networks, use 

statistical models to guess how long transformer parts 

will still work. These programs use past data, weather 

conditions, and repair records, among other things, to 

figure out how likely it is that something will fail. By 

taking doubt into account, these programs can give more 

accurate estimates of how much longer something will 

work. This helps workers make smart choices about 

when to replace and do maintenance. 

4. Model Evaluation:  

A different set of data is used to test the model's success 

after it has been trained. Metrics like F1-score, accuracy, 

precision, and memory are used to do this. To make the 

model work better, it is fine-tuned and retrained as 

needed. 

5. Deployment and Monitoring:  

After the model has been trained and tested, it is put into 

a live setting where it can be used to keep an eye on the 

health and performance of transformers in real time. The 

model constantly looks at the data coming in from the 

transformers and sends out repair alerts or suggestions 

based on how likely it is that something will go wrong. 

6. Integration with Existing Maintenance process:  

The last step is to connect the AI-powered predicted 

maintenance system to the current maintenance process. 

By creating a user interface for maintenance staff to 

view alerts and suggestions, as well as ways to plan and 

carry out maintenance tasks based on the predictions, 

this could be considered complete. 

Using AI to help with predictive maintenance on 

distribution transformers involves gathering and 

preprocessing data, choosing and engineering features, 

training and testing machine learning models, putting the 

models to use in a production setting, and integrating 

them with the current maintenance workflow. Utility 

companies can make their repair more reliable and 

efficient by using this method. This will give customers 

a more stable power source. Numerical modeling is used 

in transformer performance research because it has been 

shown to work in other studies. One study used 

computer modeling to look into how different working 

conditions affect the temperatures of transformer oil and 

windings. A finite element method was used in another 

study to look at how thermal aging changes the qualities 

of insulation. In addition a study that created a numerical 

model to guess the partial discharge origin voltage. 

These works show that computer modeling can be used 

to analyze transformers. Numerical modeling lets you 

run different scenarios to see how things like working 

conditions and age affect the performance of a generator. 

For instance, researchers can guess how insulation will 

break down over time by simulating different situations. 

Additionally, computer models can predict important 

factors such as the partial discharge inception voltage, 

which helps in figuring out the state of a transformer and 

planning its maintenance. In this research, past data on 

operations and upkeep are used to build and train an 

Artificial Neural Network (ANN) model. ANN was 

picked because it can look at complicated data 

connections. Different measures are used to judge the 

model's performance, which proves that numerical 

modeling is a good way to analyze transformer 

performance. Overall, numerical modeling is a useful 

method for learning how transformers work and how to 

improve upkeep methods, which makes sure that power 

distribution systems are reliable. 

V. RESULT AND DISCUSSION 

A. Dataset Used: 

The "Power Transformers Health Condition Dataset" on 

Kaggle is a useful tool for students and professionals 

who work with power transformer condition tracking 

and forecast repair. It has different parts that deal with 

the health of the transformer, like voltage, oil 

temperature, winding temperature, oil pressure, and oil 

temperature. It also has a goal variable that shows the 

health of the transformer. This set of data can be used to 

make models, as shown in figure2, that can predict how 

long power transformers will still work and to find 

patterns and trends in the data about their health, which 

helps us figure out what causes transformers to fail.  
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Figure 2: Classification dataset for power distribution maintenance 

One problem with this collection, though, is that it only 

has a few traits. Adding more information, like 

temperature, load profile, and repair records, could give 

you a fuller picture of the health of the generator. Also, 

the collection is missing information on when 

transformers fail, which would make forecasting models 

more accurate.  

 

Figure 3: Representation of Dataset Parameters Mapping 

Even with these problems, the collection looks clean and 

well-structured, with no missing numbers or outliers. 

Researchers could make this dataset better by adding 

data from more transformers and factors that are known 

to affect the health of transformers. Also, gathering 

information on transformer breakdowns might help 

make a more fair set of data for models. The "Power 

Transformers Health Condition Dataset" does have some 

flaws, but it is still a useful tool for furthering study into 

predictive maintenance and watching the state of power 

transformers, as shown in figure 3. 
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B. Result for AI models 

In the table 2, you can see the outcomes of several AI 

model methods for predicting when to maintain 

distribution transformers. These include Convolutional 

Neural Networks (CNN), Recurrent Neural Networks 

(RNN), Gradient Boosting, Support Vector Machines 

(SVM), and Bayesian Networks. A number of 

performance measures were used to judge these models, 

such as accuracy, precision, recall, mean squared error 

(MSE), R Square, and root mean squared error (RMSE). 

 

 

Table 2: Result for AI Model techniques for Predictive Maintenance for Distribution Transformers 

Model Accuracy Precision Recall MSE R Square RMSE 

CNN 86.33 89.45 91.22 0.19 0.85 0.42 

RNN 82.45 86.33 90.45 0.21 0.82 0.44 

Gradient 

Boosting 
90.44 94.2 96.55 0.17 0.89 0.39 

SVM 91.55 90.74 92.78 0.23 0.79 0.47 

Bayesian 

Network 
89.63 91.32 93.54 0.20 0.84 0.43 

 

CNN was right 86.33% of the time, showing that it can 

correctly guess when power transformers will need 

work. It also had high accuracy (89.45%) and memory 

(91.22%), which shows that it was good at finding true 

positives and reducing the number of fake positives and 

negatives. The model did have a pretty high MSE of 

0.19 and RMSE of 0.42, though, which suggests that 

some of its estimates were wrong. With a R Square score 

of 0.85, the model explains 85% of the differences in the 

data, which is a good fit. However, RNN did a little 

worse than CNN in terms of memory (90.45%), 

accuracy (82.45%), and precision (86.33%). It also had a 

higher MSE of 0.21 and an RMSE of 0.44, which means 

that its forecast was a little less accurate than CNN's. 

RNN, on the other hand, had a pretty high R Square 

value of 0.82, which means it explains 82% of the 

variation in the data. With a score of 90.44%, Gradient 

Boosting was the most accurate of all the models. It also 

showed high accuracy (94.2%) and recall (96.55%), 

which shows, shown in figure 4, that it did a good job of 

predicting when repair would be needed. The model had 

a really low MSE of 0.17 and an RMSE of 0.39, which 

means that its estimates were very accurate. The model 

describes 89% of the variation in the data, as shown by 

the R Square number of 0.89. 

 

Figure 4: Representation of AI based model with evaluation parameters 

With an accuracy of 91.55%, a precision of 90.74%, and 

a recall of 92.78%, SVM also did very well. It had a 

higher MSE of 0.23 and RMSE of 0.47 than other 

models, which means it made an estimate that was a 

little less accurate. With a R Square value of 0.79, the 

model seems to be able to explain 79% of the 

differences in the data.  
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Figure 5: Representation of performance parameter for Predictive maintainance 

Finally, the Bayesian Network got a score of 89.63% for 

accuracy, 91.32% for precision, and 93.54% for recall. 

The MSE was 0.20 and the RMSE was 0.43, which 

means that the forecast was pretty accurate. With a R 

Square score of 0.84, the model seems to explain 84% of 

the differences in the data, as shown in figure 5. 

 

Figure 6: Accuracy comparision of AI techniques in Predictive Maintainance 

The results show in figure 6, that Gradient Boosting 

worked the best out of all the models. It was followed by 

SVM, CNN, Bayesian Network, and RNN. These results 

show that AI model methods can help with predicting 

maintenance for distribution transformers. Gradient 

Boosting turns out to be the most accurate and reliable 

model for this purpose. 

VI. CONCLUSION 

Predictive repair for distribution transformers that is 

allowed by AI is a potential way to make power 

distribution systems more reliable and efficient. New AI 

models, like Convolutional Neural Networks (CNN), 

Recurrent Neural Networks (RNN), Gradient Boosting, 

Support Vector Machines (SVM), and Bayesian 

Networks, have shown a lot of promise in correctly 

identifying when distribution transformers will need 

upkeep. Gradient Boosting was the most successful 

model that was tested; it had the best rates of accuracy, 

precision, and memory. Because it can correctly predict 

when repair will be needed, it can help utility companies 

plan maintenance tasks more effectively, which cuts 

down on downtime and makes the system more reliable 

overall. SVM also did well, showing that it was very 

accurate and precise. It is useful for predicting 

maintenance because it can deal with large datasets and 
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links that don't follow a straight line. Even though CNN 

and RNN weren't quite as good as Gradient Boosting 

and SVM, they still showed promise. Because they can 

look at sequential data and find useful patterns, they can 

be used to look at sensor data from transformers. Even 

though it wasn't as effective as Gradient Boosting or 

SVM, the Bayesian Network did pretty well. It is a 

useful tool for looking at unclear data in predictive 

maintenance applications because it can model complex 

statistical relationships. The results show that predictive 

maintenance powered by AI can make distribution 

transformers much more reliable and efficient. Utility 

companies can cut down on downtime, lower 

maintenance costs, and improve system performance 

overall by correctly predicting when repair needs to be 

done. In the future, researchers should work on making 

these models even better and adding them to current 

power distribution systems so that they can fully 

improve the stability and efficiency of the grid. 
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